首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33359篇
  免费   3525篇
  国内免费   2648篇
  2024年   34篇
  2023年   576篇
  2022年   485篇
  2021年   862篇
  2020年   1342篇
  2019年   1507篇
  2018年   1336篇
  2017年   1249篇
  2016年   1390篇
  2015年   1455篇
  2014年   1888篇
  2013年   2700篇
  2012年   1545篇
  2011年   1857篇
  2010年   1277篇
  2009年   1802篇
  2008年   1832篇
  2007年   1853篇
  2006年   1669篇
  2005年   1487篇
  2004年   1232篇
  2003年   1231篇
  2002年   1177篇
  2001年   934篇
  2000年   852篇
  1999年   656篇
  1998年   658篇
  1997年   575篇
  1996年   483篇
  1995年   524篇
  1994年   435篇
  1993年   394篇
  1992年   398篇
  1991年   283篇
  1990年   285篇
  1989年   243篇
  1988年   135篇
  1987年   137篇
  1986年   103篇
  1985年   107篇
  1984年   110篇
  1983年   64篇
  1982年   83篇
  1981年   59篇
  1980年   44篇
  1979年   56篇
  1978年   33篇
  1977年   25篇
  1976年   22篇
  1974年   15篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Much attention has been focused on the hypothesis that oxidative damage plays in cellular and organismal aging. A mev-1 (kn1) mutant of Caenorhabditis elegans, isolated on the basis of its methyl viologen (paraquat) hypersensitivity, is also hypersensitive to elevated oxygen levels. Unlike the wild type, its life span decreases dramatically as oxygen concentrations are increased from 1% to 60%. Strains, which bear this mutation, accumulate fluorescent materials and protein carbonyl groups, markers of aging, at faster rates than the wild type. We have cloned mev-1 gene by transformation rescue and found that it is, in fact, the previously sequenced gene (cyt-1) that encodes succinate dehydrogenase cytochrome b. A missense mutation abolishes complex II activity in the mitochondrial membrane but not succinate dehydrogenase enzyme activity per se. These data suggest that CYT-1 directly participates in electron transport from FADH2 to coenzyme Q. Moreover, mutational inactivation of this process renders animals susceptible to oxidative stress and, as a result, leads to premature aging.  相似文献   
992.
In spinach thylakoids prepared from intact chloroplasts by shocking in the presence of ascorbate to preserve the operation of ascorbate peroxidase, the rate of oxygen uptake with methyl viologen as acceptor decreased in response to the addition of H2O2. Such a decrease was not observed in the presence of KCN or when the thylakoids lost ascorbate peroxidase activity. Illumination of intact chloroplasts in the presence of H2O2 and methyl viologen showed an initial rate of oxygen exchange, which is intermediate between the initial rate of oxygen evolution in the presence of H2O2 alone and steady-state oxygen uptake in the presence of methyl viologen. The data showed that monodehydroascorbate radical generated in ascorbate peroxidase reaction could compete with methyl viologen for electrons supplied by the electron transport chain in both thylakoids and intact chloroplasts. During the illumination of intact chloroplasts the rate of oxygen uptake increased. The presence of nigericin swiftly led to steady-state oxygen uptake, and to a clear-cut 1:1 relationship between the electron transport rate estimated from fluorescence assay and the electron transport rate determined from oxygen uptake, taking the stoichiometry 1O2:4e. The increase in oxygen uptake was attributed to the cessation of monodehydroascorbate radical generation brought about by consumption of intrachloroplast ascorbate in the peroxidase reactions, and the effects of nigericin were explained by acceleration of such consumption. The competition between methyl viologen and monodehydroascorbate radical in the intact chloroplasts was estimated under various conditions.  相似文献   
993.
《Free radical research》2013,47(9):1033-1039
Abstract

This study aimed to examine the roles of reactive oxygen species (ROS) in cisplatin treatment of human prostate cancer cells; hormone-sensitive LNCaP and hormone-refractory PC3 and DU145 cells. Intracellular levels of ROS and H2O2 were measured and visualized using specific fluorescent probes. NADPH oxidase (NOX) activity was detected by lucigenin chemiluminescence assay. Expression levels of NOX isoforms were determined by semi-quantitative RT-PCR. Cisplatin treatment increased the intracellular levels of ROS and H2O2 in three prostate cancer cell lines. The increase was transient and robust in hormone-sensitive LNCaP cells compared with hormone-refractory PC3 and DU145 cells. Consistent with these findings, the NOX activity induced by cisplatin was higher in LNCaP cells than in PC3 and DU145 cells. Expression pattern of NOX isoforms varied among three cell lines and the NOX activity was independent of NOX expression. Taken together, we have shown that cisplatin induces production of ROS and H2O2 via NOX activation in human prostate cancer cell lines, which is most prominent in hormone-sensitive LNCaP cells.  相似文献   
994.
Puromycin aminonucleoside (PAN) has been known to induce proteinuria. The increased generation of reactive oxygen species (ROS) has been implicated in this toxicity of PAN. We have reported that PAN increases the synthesis of methylguanidine (MG) and creatol which are the products of the reaction of creatinine and the hydroxyl radical in isolated rat hepatocytes. However, the mechanism for the increased ROS induced by PAN is still unclear. In this paper, we investigate the role of protein kinase C (PKC) on the PAN induced reactive oxygen generation in isolated rat hepatocytes. Isolated hepatocytes were incubated in Krebs-Henseleit bicarbonate buffer containing 3% BSA, 16.6 mM creatinine and tested reagents. MG and creatol were determined by high-performance liquid chromatography using 9,10-phenanthrenequinone for the post-labeling. PAN increased MG and creatol synthesis in isolated rat hepatocytes by 60%. 1-(5-Isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H-7), a PKC inhibitor, at 10 and 100 μM significantly inhibited MG and creatol synthesis with or without PAN. The inhibition rate is dose dependent from 10 to 100 μM. H1004, a reagent used as control for H-7, did not affect (at 10 μM) or increased little (at 100 μM) the synthesis of MG and creatol. Ro31-8425, a potent PKC inhibitor, significantly inhibited (at 10 μM) MG synthesis in the presence of PAN. PKC in the membrane fraction, a marker of PKC activation, increased over the initial concentration by a factor of 1.65-fold at 60 min incubation and 2.16-fold at 120 min with PAN, while it changed little without PAN. These results indicate that PAN activates PKC resulting in increased hydroxyl radical generation in isolated rat hepatocytes.  相似文献   
995.
《Free radical research》2013,47(2):116-132
The present study investigated the possible protective effect of mangiferin against D(+) galactosamine (DGal)-induced nephrotoxicity. DGal intoxication increased reactive oxygen species (ROS), reactive nitrogen species and tumor necrosis factor-α (TNF-α) production and disturbed the antioxidant machineries in the kidney tissue. Mangiferin treatment post to DGal exposure reduced all these DGal-induced adverse effects. Signal transduction studies showed that DGal significantly increased the protein expression of Bax, cytochrome c, caspase 3/9 and inducible nitric oxide synthase (iNOS) in the cytosol and NF-κB in nuclear fraction. The same exposure, on the other hand, reduced the protein expression of Bcl-2 in the cytosol. Mangiferin treatment could, however, reduce the DGal-induced up-regulation of cytochrome c, NF-κB, iNOS, caspase 3/9 and alter the reciprocal regulation of Bcl-2 family proteins. Histological studies also revealed the nephroprotective effect of mangiferin against DGal induced nephrotoxicity. Combining, results suggest that mangiferin protects rat's kidney in DGal-induced oxidative/nitrosative stress and acute nephrotoxicity via its antioxidant activities.  相似文献   
996.
Three potential routes to generation of reactive oxygen species (ROS) from α-tocopherolquinone (α-TQ) have been identified. The quinone of the water-soluble vitamin E analogue Trolox C (Trol-Q) is reduced by hydrated electron and isopropanol α-hydroxyalkyl radical, and the resulting semiquinone reacts with molecular oxygen to form superoxide with a second order rate constant of 1.3 × 108 dm3/mol/s, illustrating the potential for redox cycling. Illumination (UV-A, 355 nm) of the quinone of 2,2,5,7,8-pentamethyl-6-hydroxychromanol (PMHC-Q) leads to a reactive short-lived (ca. 10? 6 s) triplet state, able to oxidise tryptophan with a second order rate constant greater than 109 dm3/mol/s. The triplet states of these quinones sensitize singlet oxygen formation with quantum yields of about 0.8. Such potentially damaging reactions of α-TQ may in part account for the recent findings that high levels of dietary vitamin E supplementation lack any beneficial effect and may lead to slightly enhanced levels of overall mortality.  相似文献   
997.
Previous studies have shown that evodiamine could trigger apoptosis in human malignant melanoma A375-S2 cells within 24 h. To further investigate the biochemical basis of this activity, the roles of reactive oxygen species (ROS) and mitochondrial permeability transition (MPT) were evaluated. Exposure to evodiamine led to a rapid increase in intracellular ROS followed by an onset of mitochondrial depolarization. ROS scavenger rescued the ΔΨm dissipation and cell death induced by evodiamine, whilst MPT inhibitor blocked the second-time ROS formation as well as cell death. Expressions of key proteins in Fas- and mitochondria-mediated pathways were furthermore examined. Both pathways were activated and regulated by ROS and MPT and were converged to a final common pathway involving the activation of caspase-3. These data suggested that a phenomenon termed ROS-induced ROS release (RIRR) was involved in evodiamine-treated A375-S2 cells and greatly contributed to the apoptotic process through both extrinsic and intrinsic pathways.  相似文献   
998.
Mitochondrial production of reactive oxygen species (ROS) is widely reported as a central effector during TNF-induced necrosis. The effect of a family of mitochondria-targeted antioxidants on TNF-induced necrosis of L929 cells was studied. While the commonly used lipid–soluble antioxidant BHA effectively protected cells from TNF-induced necrosis, the mitochondria-targeted antioxidants MitoQ3, MitoQ5, MitoQ10 and MitoPBN had no effect on TNF-induced necrosis. Since BHA also acts as an uncoupler of mitochondrial membrane potential, two additional uncouplers were tested. FCCP and CCCP both provided dose-dependent inhibition of TNF-induced necrosis. In conclusion, the generation of mitochondrial ROS may not be necessary for TNF-induced necrosis. Instead, these results suggest alternative mitochondrial functions, such as a respiration-dependent process, are critical for necrotic death.  相似文献   
999.
UV-A irradiation caused a dose-dependent decrease in cellular oxygen consumption (56%) and ATP content (65%) in human NCTC 2544 keratinocytes, one hour after treatment. This effect was partially reversed by maintaining the irradiated cells in normal culture conditions for 24h. Using malate/glutamate or succinate as substrates for mitochondrial electron transport, the oxygen uptake of digitoninpermeabilised cells was greatly inhibited following UV-A exposure. These results strongly suggest that UV-A irradiation affects the state 3 respiration of the mitochondria. However, under identical conditions, UV-A exposure did not reduce the mitochondrial transmembrane potential. The antioxidant, vitamin E inhibited UV-A-induced lipid peroxidation, but did not significantly prevent the UV-A-mediated changes in cellular respiration nor the decrease in ATP content, suggesting that these effects were not the result of UV-A dependent lipid peroxidation. UV-A irradiation also led to an increase in MnSOD gene expression 24 hours after treatment, indicating that the mitochondrial protection system was enhanced in response to UV-A treatment. These findings provide evidence that impairment of mitochondrial respiratory activity is one of the early results of UV-A irradiation for light doses much lower than the minimal erythemal dose.  相似文献   
1000.
Lysophosphatidylcholine (LPC) and lysophosphatidic acid (LPA), the most prominent lysoglycerophospholipids, are emerging as a novel class of inflammatory lipids, joining thromboxanes, leukotrienes and prostaglandins with which they share metabolic pathways and regulatory mechanisms. Enzymes that participate in LPC and LPA metabolism, such as the phospholipase A2 superfamily (PLA2) and autotaxin (ATX, ENPP2), play central roles in regulating LPC and LPA levels and consequently their actions. LPC/LPA biosynthetic pathways will be briefly presented and LPC/LPA signaling properties and their possible functions in the regulation of the immune system and chronic inflammation will be reviewed. Furthermore, implications of exacerbated LPC and/or LPA signaling in the context of chronic inflammatory diseases, namely rheumatoid arthritis, multiple sclerosis, pulmonary fibrosis and hepatitis, will be discussed. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号